Outline

- How to format output of pmfs and cdfs
Outputting a Pretty pmf (cdf)

- As we are surely aware by now, in Matlab vectors are indexed starting with 1, unlike arrays in C, Java, ... etc.
As we are surely aware by now, in Matlab vectors are indexed starting with 1, unlike arrays in C, Java, ... etc.

If we generate a bar graph in Matlab:
\[
\text{bar( binomial\_vector ), Matlab implicitly assumes that the index is the } x \text{ value and the value of the vector at that index is the } y \text{ value}
\]
As we are surely aware by now, in Matlab vectors are indexed starting with 1, unlike arrays in C, Java, ... etc.

If we generate a bar graph in Matlab:
```
bar( binomial_vector )
```
Matlab implicitly assumes that the index is the $x$ value and the value of the vector at that index is the $y$ value.

```
bar( binom_vector )
```
For our binomial data this is (probably) not what we want. We have data for $x = 0$. 

```matlab
bar([0:10], binom vector)
```
Outputting a (sorta) Pretty pmf (cdf)

- For our binomial data this is (probably) not what we want. We have data for $x = 0$
- Assuming the $i$th index is the value of $f(i - 1)$, everything is shifted up by one
Outputting a (sorta) Pretty pmf (cdf)

- For our binomial data this is (probably) not what we want. We have data for $x = 0$
- Assuming the $i$th index is the value of $f(i - 1)$, everything is shifted up by one
- We can supply an optional argument to the `bar()` function telling Matlab explicitly what our $x$ values are

```matlab
bar([0:10], binom_vector)
```
Outputting a (sorta) Pretty pmf (cdf)

- For our binomial data this is (probably) not what we want. We have data for \( x = 0 \)
- Assuming the \( i \)th index is the value of \( f(i - 1) \), everything is shifted up by one
- We can supply an optional argument to the \texttt{bar()} function telling Matlab explicitly what our \( x \) values are
- The syntax is:
  \[
  \textbf{bar( x\_values\_vector, y\_values\_vector )} \\
  \text{( \texttt{x\_values\_vector} and \texttt{y\_values\_vector} must be the same length)}
  \]
Outputting a (sorta) Pretty pmf (cdf)

- For our binomial data this is (probably) not what we want. We have data for $x = 0$
- Assuming the $i$th index is the value of $f(i - 1)$, everything is shifted up by one
- We can supply an optional argument to the `bar()` function telling Matlab explicitly what our $x$ values are
- The syntax is:
  ```matlab
  bar( x_values_vector, y_values_vector )
  ( x_values_vector and y_values_vector must be the same length)
  ```
- `bar( [0:10], binom_vector )` should give us what we want in this case