Problem: To find the sum of all even Fibonacci numbers less than Fn for some given n .

There is no real motivation for this problem, but it turns out to be interesting to analyze.

Naive approach:

```
long sum = 0;
for (int k = 1; k <= n; k++)
{
    long next = fib(k);
    if (next % 2 == 0)
        sum += next;
}
```

Case 1: $\mathrm{fib}(\mathrm{k})$ is implemented recursively.
In this case, the execution time of fib is given by $T(n)=T(n-1)+T(n-2)+$ k . This is dominated by $2 \mathrm{~T}(\mathrm{n}-1)+\mathrm{k}$ and dominates $2 \mathrm{~T}(\mathrm{n}-2)+\mathrm{k}$. These have asymptotic behaviour $2^{\wedge} \mathrm{n}$ and $\operatorname{sqrt}(2)^{\wedge} \mathrm{n}$ respectively and thus we can say that fib(n) is $\mathrm{O}\left(2^{\wedge} \mathrm{n}\right)$ making the whole algorithm $\mathrm{O}\left(2^{\wedge} \mathrm{n}\right)$. Yuck!

An obvious improvement is given by:
Case 2: $\mathrm{fib}(\mathrm{k})$ is implemented iteratively. In this case, $\mathrm{fib}(\mathrm{k})$ is $\mathrm{O}(\mathrm{k})$, so the overall complexity is $O\left(n^{\wedge} 2\right)$.

Two approaches to further improvement are given by
Case 3a: Calculate the sum in the same loop where the Fibonacci numbers are calculated. This de-structures the code, but results in complexity $\mathrm{O}(\mathrm{n})$.

Better, I think is
Case 3b: implement fib(k) recursively but using dynamic programming via memoization. This makes fib(n) $\mathrm{O}(\mathrm{c})$ at the expense of increasing the space to $\mathrm{O}(\mathrm{n})$. Again, the overall complexity becomes $\mathrm{O}(\mathrm{n})$.

At this point, we should probably be satisfied, but it gets better!
First, a little preliminary work:
Claim: $\mathrm{f}(0)+\mathrm{f}(1)+\mathrm{f}(2)+\ldots+\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n})+\mathrm{f}(\mathrm{n}+1)-1$
Proof:
This is clearly true when $\mathrm{n}=0$, for the formula gives $0+1-1=0$.
Let $\mathrm{n}=\mathrm{k}$. Then by the inductive hypothesis we have
$\mathrm{f}(0)+\mathrm{f}(1)+\ldots+\mathrm{f}(\mathrm{k})=\mathrm{f}(\mathrm{k})+\mathrm{f}(\mathrm{k}+1)-1$. Adding $\mathrm{f}(\mathrm{k}+1)$ to each side gives
$\mathrm{f}(0)+\mathrm{f}(1)+\ldots+\mathrm{f}(\mathrm{k})+\mathrm{f}(\mathrm{k}+1)=[\mathrm{f}(\mathrm{k})+\mathrm{f}(\mathrm{k}+1)]+\mathrm{f}(\mathrm{k}+1)-1$. But $\mathrm{f}(\mathrm{k})+$
$f(k+1)=f(k+2)$, so the right hand side becomes $f(k+1)+f(k+2)-1$, which completes the proof.

Claim: for any non-negative integer $n, f(3 n)$ is an even number, $f(3 n+1)$ and $\mathrm{f}(3 \mathrm{n}+2)$ are odd numbers.

Proof:

$\mathrm{f}(0)=0$ which is even. $\mathrm{F}(1)=\mathrm{f}(2)=1$ and thus both are odd.
Suppose $f(3 k)$ is an even number, and $f(3 k+1)$ and $f(3 k+2)$ are odd.
Then $f(3 k+3)$ is the sum of two odd numbers and thus even. $f(3 k+4)$ is the sum of an odd number ($\mathrm{f}(3 \mathrm{k}+2)$) and an even number $(\mathrm{f}(3 \mathrm{k}+3)$) and thus odd. $f(3 k+5)$ is also the sum of an odd $(f(3 k+4))$ and an even $(f(3 k+3))$ so it too is odd. This completes the proof.

Finally, consider the sum

$$
f(0)+[f(1)+f(2)]+f(3)+[f(4)+f(5)]+f(6)+\ldots+f(3 n-2)+f(3 n-1)]+f(3 n)
$$

This, as observed above is equal to $f(3 n)+f(3 n+1)-1$.

But each of the bracketed pairs sum to the succeeding Fibonacci number, so this sum becomes.
$\mathrm{f}(3)+\mathrm{f}(3)+\mathrm{f}(6)+\mathrm{f}(6)+\mathrm{f}(9)+\mathrm{f}(9)+\ldots+\mathrm{f}(3 \mathrm{n})+\mathrm{f}(3 \mathrm{n})$
$=2 f(3)+2 f(6)+2 f(9) \quad \ldots+2 f(3 n)=f(3 n)+f(3 n+1)-1$.
The left hand side is just twice the sum of the even Fibonacci numbers less than or equal to 3 n . Thus, the sum we seek is given by
$[f(3 n)+f(3 n+1)] / 2$.
Finally, it is well known that $\mathrm{f}(\mathrm{n})$ can be expressed as [Phi^n $\left.-(-\mathrm{Phi})^{\wedge}-\mathrm{n}\right] / \mathrm{sqrt}(5)$ where Phi is the so called golden ratio.

Since $1 /$ Phi is approximately 0.612 , the second term is less than $1 / 2$ for any n greater than 1 . This means $f(n)$ is given by round $\left(\mathrm{Phi}^{\wedge} \mathrm{n}\right) /$ sqrt(5).

This gives us our final algorithm:

```
public static long sumEven(int n)
{
    final double PHI = (1 + Math.sqrt(5.0) / 2.0;
    while(n % 3 != 0)
        n--;
    long f3n = (long)Math.round(raise(PHI, n));
    long f3np1 = (long)Math.round(raise(PHI, n+1));
    return (f3n + f3np1 -1)/2;
}
```

raise(base, exp) can be written recursively to be $\mathrm{O}(\lg (\mathrm{n}))$, which gives us a $\lg (\mathrm{n})$ solution to the original problem. Not bad improvement for a problem where we started at $2^{\wedge} \mathrm{n}$.

